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ETH Zürich
Institute of Computational Science

† :
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Scalable §6 → Production code usingO(1000) CPUs

Algebraic §5 → black-box, no geometric information

Multigrid §4 → optimal preconditioner

for Human §2 → applications to real-life problems

Trabecular Bone §1 → bone type that mostly suffers from
osteoporosis

Structures §3 → data structures arising from CT scans,
modeled with µ−Finite Elements (lin-
ear elasticity); needs a linear solver



Trabecular Bone

From Wikipedia:

Trabecular bone is one of two main types of bone.
Trabecular bone is spongy, and makes up the bulk of the
interior of most bones, including the vertebrae, while
cortical bone is dense and forms the surface of bones.



Trabecular Bone (cont’d)

Bones are living tissues

structure evolves to adapt to environment

a disease, osteoporosis, can damage the bone



Osteoporosis

Lifetime risk for osteoporotic fractures in women is estimated
close to 40%; in men risk is 13%

Enormous impact on individual, society, health care systems
(as health care problem second only to cardiovascular diseases)

“healthy” “osteoporotic”

How to estimate that a bone can “carry the load”?



In-vivo Assessment of Bone Strength

Our aim: develop techniques to predict the bone
strength, with a strong focus on in-vivo assessment

Current procedure:

For the clinician, the prediction of bone strength for individual
patients is, so far, more or less restricted to the quantitative
analysis of bone density alone, although there is convincing
evidence that bone microarchitecture plays a significant role
as well.

Since global parameters like bone density do not admit to
predict the fracture risk, the microarchitecture has to be taken
into account: use a finite element solver



In-vivo Assessment of Bone Strength (cont’d)

pQCT: Peripheral Quantitative Computed Tomography



In-vivo Assessment of Bone Strength (cont’d)

(Some of ) required tools:

1 pQCT / high-resolution CT scan

2 filtering software to generate FE meshes

3 a mathematical model for trabecular bones

4 E , ν parameters

5 a scalable, robust and reliable parallel solver

6 data mining techniques

7 last but not least, a high-performance scalable computer or a
computational grid



The Mathematical Formulation

Equations of linear elasticity (weak formulation):
Find u ∈ [H1

E (Ω)]3 = {v ∈ [H1(Ω)]3 : v|ΓD
= uS} s.t.∫

Ω
[2µε(u) : ε(v) + λ div u div v] dΩ =

∫
Ω

ftvdΩ+

∫
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gt
SvdΓ,

for all v ∈ [H1
0 (Ω)]3 = {v ∈ [H1(Ω)]3 : v|ΓD

= 0}.
with Lamé’s constants λ, µ, volume forces f, boundary
tractions g, symmetric strains

ε(u) :=
1

2
(∇u + (∇u)T ).

Domain Ω is a union of voxels



Discretization using µ-FE

Finite element approximation: displacements u represented by
piecewise trilinear polynomials, integration using quadrature
formula

Boundary conditions on displacements (Dirichlet)

After discretization, we have to solve the system of linear

equations

Kx = b or (KM)M−1x = b

K is large sparse, symmetric positive definite and M a
preconditioner.

kernel also for time-dependent or nonlinear problems

We use preconditioned conjugate gradient method

Current solver: use Jacobi or Element-by-Element
preconditioner

need a scalable preconditioner: multigrid



A Simple Multigrid V-cycle

1: procedure multilevel(K`,b`,u`, `)
2: if ` < L then
3: u` = S`(K`,b`,u`); {Presmoothing}
4: r`+1 = R`(b` − K`u`); {Coarse grid correction}

v`+1 = 0;
multilevel(K`+1, r`+1, v`+1, ` + 1);
u` = u` + P`v`+1;

5: u` = S`(K`,b`,u`); {Postsmoothing}
6: else
7: Solve KLuL = bL;
8: end if

Preconditioner: Call procedure multilevel(K0 = K ,b,u = 0, 0)



Multigrid Techniques

multigrid methods require the definition of the auxiliary
operators P`,R`, and K`

this can be done with geometric or algebraic procedures

we adopt algebraic multigrid; two variants:

Algebraically coarsen on each level by identifying a set of
coarser-level nodes (C-nodes) and finer-level nodes (F-nodes)
(Ruge, Stüben, 1987).

Algebraically coarsen on each level by grouping the nodes into
contiguous subsets, called aggregates, as done in smoothed
aggregation (SA) (Vanek, Brezina, Mandel, 2001).



Smoothed Aggregation Setup

1 Define the maximum number of levels, L
2 for each level ` do
3 if on coarsest level then
4 Define the coarse solver; Return
5 endif
6 Define P`
7 R` = PT

`
8 K`+1 = R`K`P`

9 Define the smoother S`

10 endfor



To Store or not To Store K?

Two approaches:

1 matrix-ready methods: K is assembled and fully stored in
memory, requiring memory space for about nnz floating point
numbers. (Multigrid solvers already available.)

2 matrix-free methods: K is never assembled, instead

K =
∑

e

TeKeT
T
e

can apply K to a given vector. This is called EBE:
element-by-element. (Which preconditioner?)



Matrix-Free Multigrid

Matrix-free methods are particularly favorable for problems
arising from voxel conversions: all elements generated in the
voxel conversion have exactly the same shape, size and
orientation.

All Ke related to a given material are identical: required
storage is 24× 24× sizeof(double) bytes.

However:

Few preconditioners are available: Jacobi, EBE, polynomial, ...

We want to define an algebraic multigrid preconditioner that
operates in matrix-free environments



Weak scalability test

Problem size scales with the number of processors



Weak scalability test (cont’d)

name elements nodes matrix rows file size (MB)

c01 98’381 60’482 295’143 9
c02 774’717 483’856 2’324’151 74
c03 2’609’611 1’633’014 7’828’833 250
c04 6’164’270 3’870’848 18’492’810 593
c05 12’038’629 7’560’250 36’115’887 1’157
c06 20’766’855 13’064’112 62’300’565 1’859
c07 32’983’631 20’745’326 98’950’893 3’172
c08 49’180’668 30’966’784 147’542’004 4’732
c09 70’042’813 44’091’378 210’128’439 6’737
c10 96’003’905 60’482’000 288’011’715 9’235
c12 104’512’896 165’834’762 497’504’286 15’953
c14 165’962’608 263’271’435 789’814’305 25’327
c15 204’126’750 323’887’399 971’662’197 31’155
c16 247’734’272 392’912’120 1’178’736’360 37’798



Weak Scalability for Matrix-Free

matrix rows CPUs prec setup sol iters

7’828’833 2 56.33 85.40 21
18’492’810 16 79.37 88.29 20
36’115’887 32 88.66 87.83 20
98’950’893 86 87.44 94.95 21

147’542’004 144 88.64 86.22 21
210’128’439 183 96.72 96.44 21
288’011’715 260 86.711 98.41 22
497’504’286 460 103.25 97.82 22
971’662’197 860 156.49 105.29 22

1’178’736’360 1024 225.71 106.34 22



Algebraic Multigrid for µ-FE Problems

1 if enough memory: assemble K and use “standard” smoothed
aggregation with Chebyshev or symmetric Gauss-Seidel
smoothers, diameter-3 aggregates

2 if not enough memory: prepare K to be applied with EBE
approaches, use matrix-free multigrid with Chebyshev
smoother for level-0, use aggressive coarsening (50 to 200
nodes per aggregate on level-0)

Both approaches available through ML
(http://software.sandia.gov/trilinos/packages/ml); see

ML 5.0 Smoothed Aggregation User’s Guide,
M. Gee, C. Siefert, J. Hu, R. Tuminaro, M. Sala

Sandia National Laboratories Report SAND2006-2649.



Our Code: ParFE

sourceforge.net project based on

parallel I/O using HDF5:

binary, portable
mesh reading scales (reasonably) well with number of
processors

load balance using ParMETIS

several Trilinos packages:

domain decomposition techniques for matrix assembly and
linear system solves
algebraic multigrid preconditioners



The ParFE Project (cont’d)

Initial partition (left) based on node coordinates
ParMETIS repartition (right)



Weak Scalability

CPUs input repart. assembly precond. solution output total iters
1 1.25 2.28 6.25 8.58 28.86 0.10 47.32 51
8 1.27 3.84 6.64 9.03 30.98 0.52 52.28 53

27 2.00 4.18 7.03 9.67 34.23 0.78 57.88 56
64 3.65 4.20 7.12 10.05 32.60 1.33 58.94 53

125 5.03 4.78 7.26 15.86 32.71 2.33 67.97 52
216 8.23 4.92 7.26 15.91 32.34 3.81 72.47 51
343 9.58 5.27 7.38 16.09 31.64 5.25 75.21 49
512 17.34 5.39 7.29 17.04 30.24 8.03 85.33 47
729 20.98 6.18 7.36 23.98 30.24 11.05 99.78 45

Problem size n = # CPUs × 295’143



Weak Scalability (cont’d)



Conclusions

Our code C++, ParFE, is a parallel highly scalable FE solver
for bone structure analysis based on PCG with aggregation
multilevel preconditioners

On the CRAY XT3, all phases but the I/O scale very well

Poor scaling of I/O is mostly due to the limited number of
available I/O nodes; however
time-dependent or non-linear problems less dependent on I/O

Smoothed aggregation preconditioner not too sensitive to
jumps in coefficients

The 200M degrees of freedom test is solved in less than 100
seconds on the Cray XT3

the one billion degrees of freedom test is solved in less than
10 minutes using a matrix-free algebraic multigrid
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